Learn
SHAP Values In Support of Forecasting
Given their ability to generate clear explanations while preserving accuracy, SHAP values have large potential to support Explainable AI. By bringing machine learning...
The Rise of Financial Fraud in the Digital Era and…
In a world of escalating financial fraud, Explainable AI has the potential to make powerful, ML-based fraud detection a realistic option that aligns with regulations, ethics,...
Privacy-Preserving Model Explainability: What It Is & How Data Influences…
Explainable AI can help organizations align with ethical and regulatory imperatives in order to unleash the potential of their data, including private...
Inpher Advances Roadmap In Support Of Government Privacy AI Mandates
Inpher announced the strategic advancements of their solution portfolio to align with President Biden’s Executive Order on the Secure and Trustworthy Development and Use of...
Bring Your Own Data With Inpher
Inpher launches enterprise-ready BYOD initiative for seamless secure data collaboration and AI project...
Governance and Privacy-Enhancing Technologies: Why Every Enterprise Needs to Adopt…
Privacy-Enhancing Technologies (PETs) represent a revolutionary capability that facilitates a delicate equilibrium between privacy and utility within information...
AI, Data and the Privacy Gap: Institutionalizing Governance within the…
AI systems have an insatiable appetite for data. Rapid advancements mean they are now capable of massive ingestion and use of almost all publicly available data–so...
Moore4Medical Accelerates Patient Monitoring for Improved Outcomes with Inpher
Moore4Medical is a European project led by Philips, comprised of a total of 65 partners, including universities, research institutes, hospitals, and private...
Privacy Budget in Support of Privacy by Design
As of late the concept of privacy by design has been formalized in data protection laws globally. Having evolved as a way to consider the broader systems and processes in...
The Seven Foundational Principles of Privacy by Design
First introduced in 1995, privacy by design evolved alongside privacy-enhancing technologies (PETs) and is intended to address the broader systems and processes in which PETs...
Inpher-Oracle Cloud Marketplace Partnership Offers Privacy Preserving Ai/Ml Platform
Inpher privacy-enhancing computation platform accelerates secure data collaboration and Ai initiatives on Oracle Cloud...
Privacy Budget: A Roadmap to Privacy Preserving Data Collaboration
In the world of data collaboration, it is generally understood that when two or more parties share training data for their AI models, they achieve more accurate predictions...
Privacy Budget and the Data-Driven Enterprise
Recent developments in machine learning and artificial intelligence have highlighted the benefits data exploration can bring to organizations across industries....
Empowering Women Leaders: The Impact of Women in High-Tech
As a junior professional, venturing into the high-tech space has been a truly unique and eye-opening journey filled with brilliant encounters....
A Winning Go-to-Market Starts with Unification: From CMO to CRO
In today's hyper-competitive business landscape, the success of a company heavily relies on the seamless integration and alignment of various functions and in my case,...